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TIME DEPENDENT SOLIDIFICATION OF BINARY MIXTURES*

Bruno A. Boley
Technological Institute, Northwestern University

Evanston, Illinois

Abstract

The problem of change of phase in a binary mixture is considered under arbi-
trary cooling or heating on the surface. Significantly different behavior is
noted between the known solution for a sudden jump in surface temperature and
other cooling histories, The solution is presented in series form, and a
numerical example is given .4 .4

Introduction

The problem of solidification (or melting) of mixtures has received attention
for a number of years both from fundamental and practical points of view
(c£.[1]). Analytical solutions of the corresponding coupled heat and mass
transfer boundary-value problem have been discussed for semi-infinite bodies
uncer sudden changes of surface temperature (e.g.[2,3,4]). The response to
these special conditions has been found to be characterized by similarity, and
by constancy of concentration in the solid, and of both phases at the inter-
face. This behavior cannot be expected to prevail in any more complex pro-
blem, whether the additional complexity be due to different cooling histories,
different geometrical configurations or other effects. The purpose of the pre-
sent work is to examine the problem of a semi-infinite slab, solidifying under
arbitrarily time-dependent cooling conditions at the surface, and to derive a
solution valid for short times after the start of solidification. 1In partic-
vlar, it is noted that the special behavior alluded to earlier is not exhib-
ited in the present solution.

*This work was supported by the Office of Naval Research
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Formulation of the Problem

Consider a slab (0<x<L), initially (t=0) liquid with temperature TL° and with

solute concentration CLo’ under presecribed cooling conditions at x=0 and (to
fix ideas) insulated and with no mass transfer at x=L. Solidification will

start at x=0 at a time tm,i.e., when the temperature reaches the value

Tm(tm) o To 7 mCLo (1)
where [2] T = To - mCL is the equation of the liquidus curve in the (linearized)
phase diagram of the binary mixture in question. The pre-solidification solu-
tion is easily obtained by standard methods [S], since it does not involve any
coupling between heat and mass flow, and in fact corresponds to

CL(x,t) = CLo t<t (2)
For t>tm, the solid phase will occupy the space 0<x<s(t), and the problem is
then described by the following equations (for properties constant but not
necessarily equal in the solid and the liquid):
Field equations:

KLTL" - pe, T =0 bc " - ko 0 in s(t) <x<L 3)

RGT " - pegfg = 0 5 DC" - és = 0 in O<x<s (t) %)
Boundary conditions (for example):

~KTg' (0,8) = Q_(t) or Tg(0,t) = Tg (£); Cg'(0,) = 0 5)

-KLTL'(L.t) - QL(t) or T, (L,t) = TLL(t); CL'(L,t) =9 (6)
Interface conditions:

TL(s,t) = Ts(s,t) = Tm(t) Tl mcL(S.t); CS(S.t) = kCL(s,t) )

KgTg' - KLTL' = pls ; DCg' - DLCL' = (1-k) CLQ at x = s(t) (8)

To these, initial (t-tm) conditions must be added, stipulating that temperature
and concentration are continuous at t-tm and that

s(tm) =0 9)
In the above equation k is the partition coefficient, and the other symbols
have obvious meanings (cf.[2])

Basic Considerations

It is convenient, in order to construct a solution to eqs. (3) to (9), to begin
with some general considerations based on experience with the analogous un-
coupled heat conduction problem. This eliminates the necessity of employing a
direct method of solution (e.g., the embedding technique[6]) which, although
applicable to the coupled problem, is likely to be rather cumbersome, What
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will then be used will be an inverse method , that is one in which the form of
the solution is assumed at the outset, and it is then shown that all conditions
of the problem can be satisfied on the basis. To complete the solution it is
then necessary to show that the solution thus found is the only possible one.
The appropriate uniqueness theorem will be presented in a subsequent publi-

cation and is not considered here.

We first note that, in the uncoupled problem, a distinction must be made [7)
depending on whether

lim E(y)/./y = 0 or lim E(y)/fy # 0 (10)
y-+0 y-+0

where

) = 3‘,‘%? Py = (/) - 1 (10a)
m

The second of (10) is satisfied by the similarity solution earlier mentioned,

which is a direct extension of the classical Neumann solution [5] of Stefan's

problem. We note that, in both uncoupled and coupled solutions of this type,

the form of € is the same, i.e., € = 2),/y for y€l, where ) is a constant. We

will return to that problem later; our present aim 1is the discussion of prob-
lems characterized by the first of (10), and we shall assume that there too

the form of E(y) is unchanged by coupling,

The form of the function E(y) is known in a number of cases. The starting
solution (i.e., the first term of series expansion) is know for any arbitrary
cooling history [7]. For the general class of problem in which the surface
heat flux is expressible in a series of a half-integral powers of y, it is
found [7) that E(y) is also so expressible, while for the companion problem in
which the s:rface temperature is so expressible, E(y) requires [8]) a series in

powers of y°. Let us consider the former of these classes of problems, and

assume that the heat flux is continuous; then [7] gives

@
n+3)/2
e =) gy an
n=0
Inspection of the second of eq.(8) can now be used to guess the first term

of a series representation for the concentration. The right-hand side of

that equation is proportional to &, or, with (11), initially proportional to
J¥. Hence it is reasonable to expect that the concentration be distributed,

for short times, in the manner corresponding to 8 surface flux also proportional

to .y, or

L — S— - — - — - e p————




C, X,y) 2
—CL_ =1+C,yi erfc(ano/ﬁ) for y<l (12)
(o]
where
p.S . = ‘ . =
X = ?-s/‘?;rm : BL,S V}*L,S/DL,S 358 JKS/KL (13)

For CS we write a similar expression, but imaged about X = 0 so as to satisfy
(5), or, still for y<l,

C. X,y) kC
-§7r——— N —32 y[izerfc(XB /v&) + izerfc(-XB /v@7] (14)
Yo So 2 S S

where the last of (7) requires that C = kCLo' and where the factor k/2 has

So
been introduced for future convenience.

To extend the solution, it is again conjectured that a series in half-integral

powers of y is appropriate, or
- -]

c, X,y)
I SR IR S e v TN A (15a)
C L En L
Lo ol
C. (X,y) &
S i N n/2[ .n n 5
CH k{l * %L_ZCSny [.1 e'fc(’“’s/ﬁ%i “fc( "Bs/ﬁ)]} (15b)
n=

Similar argruments may now be applied to the first of eqs.(8) to obtain the
form of the temperature functions. In this case, one must be careful however
to add particular solutions of (3) and (4) which will insure satisfaction of
the non-homogeneous boundary conditions (5). The simplest way of achieving
this is to employ [6,9) the analytic continuation T*(X,y), into the post-
solidification period, of the pre-solidification solution. Thus

T, X,y) * i
; Pty T n/2.n
V. X,y) = — = + ZT y i erfc (X6/./) (16a)
L T. =T () T. =T (t.) Ln
Lo m'm Lo m'm he?
e Tso(.y) T*
v oY) B w ey 3 4
. TLo Tm(tm) TLo Tm(tm)
&z TSnanZ[lnerfc(x/.ﬁ) + 1ner£c(-x/ﬁ)] (16b)
n=2

Eqs.(15) and (16) satisfy all conditions of the problem, with the exception of
the conditions to be satisfied at the solid-liquid interface, namely (7) and
(8). In dimensionless form, these take the following form (the arguments

€,y being understood throughout):




b e e e

= = [ - —I—"\
V= Vg =V (14 T (17a,b)
\
(Cs/CLo/ = *L O/ 50, (17¢)
v v
s =5E 95 (17d)

S ( 5) ( L L°’ = aBSZ(l-k) %f (17e)

where the dimensionless notation:

Mgﬁ” Tyt WL e T
’ ’ = ’
2 2 : 2 o TLo Tm(t)
6.2 D g
e e i B s
| ’ /
KS \BL, Ds
The five sets of coefficients gn’CLn’CSn’TLn’TSn must be adjusted so as to

satisfy the five equations (17a-e).

Solution and Discussion

The solution now requires the substitution of (11),(15) and (16) into

(17a-e); separation of the resulting equations into terms of like powers of y,
then gives sets of equations from which the unknown coefficients can be derived.
The process is straight forward but rather laborious, since it requires expan-
sion in powers of y of the several integrated error functions, whose arguments
themselves are power series. The details of the process will be omitted, but
it may be noted that the calculations fall in a distinct pattern. It is con-
venient to consider first the highest-order terms in eqs. (17a,d,e); these
yield three simultaneous equations for (go,CLz,TLz), and the coefficients
(TSZ’CSZ) are then found from (17b,c) respectively. The pattern repeats for
further coefficients: a set of three simultaneous equations for (gl,CL3,TL3)
results from the next-order terms in (l17a,d,e), with CTS3’CS3) obtained again
from (17b.c), and so forth.

As an example, the case of a constant flux Qo at x=0 was considered in detail.

Here
* T
8 ) EE— T —_ Jr(l+y) ierfc X (19)
T, o Tn (t) T T () Sy

-




and the following results are obtained (for simplicity we take § = m = 1 and

B = Bs):

First-order terms: % 1
§° 3n
ot 3,/ B(1- k)Av
(20a)
Cia ™0y (Nl BE 5 T~ L., 3n€ /M
Second-order terms: -3ﬂ§o
B e
bOALI 4 1601-0Bav,
(20b)
€™ Gy " 32(1-k)BE, ; Tis ™ Teq = 16,/ gl/M

Third-order terms:

2
2 3/2 2M P 2
48/ g, +2M(3ﬁr‘g -1)+3m / g, m'\_l;ﬁ'3§a*33 Avon(l-k)go[32-15n(1-k)]
5 15m + 30/ AV _BM(1-K)
Cy = 30,/7(1- k)B zg + 3/ B(1- k)§ g3 oy ™ Cry ~ 19232502(1-10 :

(20c)

T

61 2M 2

= /= - =2 . - - 96 /7

L4 g g (3 % & oJ b Tgq = Tig oy A8

and so forth. Some comments on the above solution may be useful.

The method employed for the solution makes it clear why a distinction must be
made depending on which of eqs.(10) holds. 1In fact, when (as at present) the
first of (10) is valid, the various error-function integrals tend, as y-+0 and
on X = E(y), to constants independent of the problem parameters. When the
second of (10) holds, in contrast, the error functions are dependent on the
proportionality constant )\ between & and Vr—. This implies, for example, that
cL(g,y)4f(l) as y+0, and therefore Tm(t) is also dependent on )\. The quantity

)\ would appear in all equations, and the present separation of the several equa-
tions would no longer be possible. The procedure followed here could of course
still be employed, but it would be much more cumbersome. It is rather more con-
venient to solve the problem separately in these cases, as indeed was done in
(2,3,4].

The present solution reduces to the uncoupled one [9] if either A=o0 or k=1; in
all other cases the form of € is the same but the coefficients differ. The
concentration of the interface, given by

C. (8,y) C. (8,y) C C , C
L 178 e L2 3
A "k G Lah *E%’ +\32 :ch.z"  syghen

exhibits (Fig.l)a gradual increase from its initial value. Note that the concen-

tration in the solid is not uniform.

-6-
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LIST OF SYMBOLS

Symbols listed in the [brackets] are dimensionless, and are defined in the

equations indicated.

[A, eq.(18))eeeceeueccecencssss.parameter characterizing the liquidus line

PR i G10) Lii bl s i i

Covia ninisieiainie v asinis sia alaidls s sisisaiein st SPOBCII] CHRA ST
Ceeecsscencansssassnnnssssessss.mass-fraction of solute
Dicrosonsiasnssnanexsessunsnssasaltfusion cogfficient

B sianeanssnnadeeesisse diesmnes sesbiRCL1ON
Keosooeosnssosscsnsnasesssessesspartition coefficient
Kevoeososoasssosssssssnsassssessthermal conductivity
Bosusversnossnncsnsncieosssessesnlatent heat of fusion
Eisnsvssscnoecvocnosnoconsesssessgtlichness
Meaceseennnsssessossasssssnssesadslope of liquidus line

(M, 9. (18))eceeerevessceeessseoprincipal fusion parameter
Qiiesescocsivsssbssasessnnssessahent tlng

s, [€, eq.(10a))eeesevececesees.position of solid-liquid interface
t, [y, eq. (102))eeseececccscecatime

T, [V, eqs(16))ececscsseceessss.temperature

x, [X, eqe(13))eeecveceeecesses.distance from exposed surface
(6, eq.(13)]....................,,/KS/KL

[n, €q.(18))eeeecvescececeseessoratio of liquid to solid diffusivities

K..'.'..'.....l....’....'....ll.diffusivity
[A)eeeceeeescoceeansecasssessssosimilarity coefficent in constant
temperature solution

p.............-.....-...........density

Fig.l. Variation of interface concentration CL(g,y) = 2Cs(§,y) and of
interface position E(y) with time,

M=0,1; k=A=0,5; n=6§ = Bs = BL = Vo =1

o, [
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